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Abstract

In this paper, an extension of the Chen distribution is defined. The new distribution is based
on the odd-log-logistic-G family of distributions, which adds an extra shape parameter to
the baseline distribution. Here, the proposed distribution is called odd-log-logistic-Chen.
Some properties have been defined. A regression model with parameterization on the
median is also proposed. The maximum likelihood method is used to estimate the unknown
parameters. The accuracy of the maximum likelihood estimators is shown through Monte
Carlo simulations. The usefulness of the new model is shown with three applications to real
uncensored data, the odd-log-logistic-Chen distribution being better than other three models
known in the literature. From the defined regression model, an application to censored data
of laryngeal cancer is also considered.
Keywords: Chen distribution; bimodal distribution; regression model; maximum likelihood;
quantile function; Monte Carlo simulation; failure rate function

1 Introduction
In recent years, the Chen (Chen, 2000) distribution used as a baseline for many generators

proposed in the literature. Some generators used are exponentiated-G (Dey et al., 2017), Marshall-
Olkin-G (Rocha et al., 2017), Kumaraswamy Exponentiated-G (Khan et al., 2018), gamma-G
(Reis et al., 2020), among others.

In this paper, the Chen distribution is inserted in odd log-logistic-G (Gleaton and Lynch,
2006) family. Let G(x;η) be a baseline cumulative distribution function (cdf) indexed by q-
vector of parameters η. The cdf of the odd log-logistic-G (OLL-G) family with one extra shape
parameter is given by

FOLL-G(x; a,η) =
G(x;η)a

G(x;η)a + Ḡ(x;η)a
, (1)
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where a > 0 is the extra parameter and Ḡ(x;η) = 1−G(x;η). Note that for a = 1, the baseline
distribution G(x;η) is obtained. Note that

a =
log[FOLL-G(x; a,η)/F̄OLL-G(x; a,η)]

log[G(x;η)/Ḡ(x;η)]
.

Thus, the extra parameter a represents the log-odds ratio between the generated distribution
and the baseline distribution.

The corresponding probability density function (pdf) and the hazard rate function (hrf) are

fOLL-G(x; a,η) =
ag(x;η){G(x;η)Ḡ(x;η)}a−1

{G(x;η)a + Ḡ(x;η)a}2
(2)

and

φOLL-G(x; a,η) =
ag(x;η)G(x;η)a−1

Ḡ(x;η)[G(x;η)a + Ḡ(x;η)a]
,

respectively, where g(x;η) = dG(x;η)/dx.
The cdf and pdf of the Chen (Chen, 2000) distribution are given by

G(x;λ, β) = 1− eλ(1−ex
β
), x > 0

and
g(x;λ, β) = λβxβ−1ex

β+λ(1−ex
β
), x > 0, (3)

respectively, where, λ > 0 is the scale parameter and β > 0 is the shape parameter.
By taking G(·) and g(·) as the cdf and pdf of the Chen distribution, respectively, and

substituting in (1) and (2), the cdf and pdf of the OLL-Chen (OLLC) distribution are

FOLLC(x; a, λ, β) =

[
1− eλ(1−ex

β
)
]a

[
1− eλ(1−ex

β
)
]a

+ eaλ(1−ex
β
)

and

fOLLC(x; a, λ, β) =
aλβxβ−1ex

β+λ(1−ex
β
)
[
eλ(1−ex

β
) − e2λ(1−ex

β
)
]a−1

{[
1− eλ(1−ex

β
)
]a

+ eaλ(1−ex
β
)
}2 . (4)

For a = 1, the OLLC distribution is reduced to Chen distribution. The random variable X
with pdf (4) is denoted as X ∼ OLLC(a, λ, β).

The corresponding hrf of X is

φOLLC(x; a, λ, β) =
aλβxβ−1ex

β
[
1− eλ(1−ex

β
)
]a−1

[
1− eλ(1−ex

β
)
]a

+ eaλ(1−ex
β
)
.

Figure 1 shows some forms of OLLC density. Note that, this new pdf supports several forms,
including one of the most sought after in the literature, which is the bimodality. Figure 2 shows
some plots of the hrfs of X . The hrf can take various forms, such as: decreasing, unimodal,
bathtub, unimodal-bathtub. This shows the flexibility that the additional parameter a has.
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Figure 1: Some OLLC pdfs.
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Figure 2: Some OLLC hrfs.

This paper is organized as follows. In Sections 2 and 3, the linear combination and some
properties of the OLLC distribution are described, respectively. The maximum likelihood
estimation method and Monte Carlo simulations are presented in Section 4. In section 5, a
regression model is introduced. Maximum likelihood estimation is discussed and Monte Carlo
simulations are performed. In Section 6, the usefulness of the proposed model is shown through
applications to uncensored and censored data. Finally, Section 7 concludes the paper.

2 Expansion for density
For a given cdf G(z;η) with parameter q-vector η, the random variable Z is called of exp-G

with power parameter a > 0, if its cdf and pdf are

HEG(z; a,η) = G(z;η)a and hEG(z; a,η) = a g(z;η)G(z;η)a−1,
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respectively, where g(z;η) = dG(z;η)/dz. The random variable Z is denoted as Z ∼
exp-G(a,η).

Using the generalized binomial expansions, Cordeiro et al. (2016) showed that the Equation
(2) can be written as

fOLL-G(x; a,η) =
∞∑
k=0

wk hEG(x; (k + 1),η), (5)

where hEG(x; (k + 1),η) is the exp-G((k + 1),η) pdf and the coefficients wk are

wk = wk(a) =
a

(k + 1)

∞∑
i,j=0

∞∑
l=k

(−1)j+k+l

(
−2

i

)(
−a(i+ 1)

j

)(
a(i+ 1) + j − 1

l

)(
l

k

)
.

Which shows that the OLL-G family pdf is a linear combination of exp-G densities. By
integration corresponding cdf is

FOLL-G(x; a,η) =
∞∑
k=0

wk HEG(x; (k + 1),η),

where HEG(x; (k + 1),η) is the exp-G((k + 1),η) cdf.
According to Reis et al. (2020), the pdf of the exp-Chen(a, λ, β) distribution can be expressed

as

hEC(x; a, λ, β) =
∞∑

m=1

(−1)m+1

(
a

m

)
g(x;mλ, β), (6)

where g(x;mλ, β) is the Chen density function with scale parameter mλ and shape parameter β.
So, the exp-Chen pdf can be write as a linear combination of Chen densities.

Then, inserting (6) in (5), the pdf (4) can be written as

fOLLC(x; a, λ, β) =
∞∑

m=1

vm g(x;mλ, β), (7)

where

vm = vm(a) = (−1)m+1

∞∑
k=0

wk

(
k + 1

m

)
.

So, is demonstrated that the pdf of the OLLC distribution can be expressed as a mixture of
Chen densities. The corresponding cdf is obtained by integration

FOLLC(x; a, λ, β) =
∞∑

m=1

vm G(x;mλ, β),

where G(x;mλ, β) is the Chen(mλ, β) cdf.

3 Properties
The quantile function (qf) of the OLL-G family, say QOLL-G(p; a,η) = F−1

OLL-G(p; a,η), is
given by

QOLL-G(p; a,η) = QG

(
p1/a

p1/a + (1− p)1/a
;η

)
, 0 < p < 1,
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where QG is the qf of the baseline G(x;η).
Then, the qf of the OLLC distribution becomes

QOLLC(p; a, λ, β) =

{
log

[
1− λ−1 log

(
(1− p)1/a

p1/a + (1− p)1/a

)]}1/β

, 0 < p < 1. (8)

When p = 0.5, the median of the OLLC distribution is obtained. Thus, the median of X is

median(X) =
{
log

[
1− λ−1 log(0.5)

]}1/β
.

Note that the median of the proposed distribution does not depend on the additional parame-
ter a. Table 1 presents the median of X for selected values of λ and β. Note that for fixed β,
when λ increases, the median decreases. On the other hand, fixing λ, when β increases, the
median also increases.

Table 1: Median of X for selected values of λ
and β.

β = 1 β = 2 β = 3 β = 4

λ = 1 0.5265 0.7256 0.8075 0.8519
λ = 2 0,2975 0.5454 0.6676 0.7385
λ = 3 0.2078 0.4559 0.5923 0.6752
λ = 4 0.1598 0.3998 0.5427 0.6323

From Equation (8), X can be easily simulated. Basically, if U is a random variable uniformly
distributed on unit interval, say U ∼ U(0, 1), then the random variable

X =

{
log

[
1− λ−1 log

(
(1− U)1/a

U1/a + (1− U)1/a

)]}1/β

(9)

has pdf (4). Using (9), some values of X was simulated and the histograms of these values are
displayed in Figure 3. The red line represents the respective pdf for the same parameters as the
values were generated. It is noted the great flexibility that this new distribution has.

From Equation (8), expressions for skewness and kurtosis can be obtained. The Bowley
skewness is based on quartiles and the Moors kurtosis is based on octiles. Let QOLLC(p) =
QOLLC(p; a, λ, β), the expressions for this skewness and kurtosis of X are given by

B(a, λ, β) = QOLLC(3/4) +QOLLC(1/4)− 2QOLLC(2/4)

QOLLC(3/4)−QOLLC(1/4)

and

M(a, λ, β) =
QOLLC(7/8)−QOLLC(5/8)−QOLLC(3/8) +QOLLC(1/8)

QOLLC(6/8)−QOLLC(2/8)
,

respectively. Plots of the skewness and kurtosis of X as function of a for selected values of λ and
β are displayed in Figure 4. This Figure show that for β < 2.5, the skewness has a decreasing
behavior when the parameter a increases. On the other hand, for β > 2.5, the skewness decreases
to a certain point and then increases as the parameter a increases. With respect to kurtosis,
for β > 2.5, the behavior of kurtosis is similar to that of skewness. On the other hand, for
β < 2.5, the kurtosis increases to a certain point and then decreases as the additional parameter
a increases.
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(c) OLLC(0.4, 3.3, 3)
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(d) OLLC(0.2, 0.2, 3)
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Figure 3: Simulated values of X for specific special cases.

By using expression (7), the rth moment of X is given by

E[Xr] =
∞∑

m=1

vmE[Y r
m],

where Ym ∼ Chen(mλ, β).
The rth moment of the random variable Y having density function (3) is given according to

Pogány et al. (2017) as

E[Y r] = λ eλ Drβ−1

t

[
Γ(t+ 1, λ)

λt+1

]

t=0

. (10)

Here,

Dp
t

[
Γ(t+ 1, λ)

λt+1

]

t=0

= Γ(p+ 1)
∑
k≥0

(2)k
k!

Φ
(0,1)
µ,1 (−k, p+ 1, 1) 1F1(k + 2; 2;−λ),

where Γ(p) =
∫∞
0

up−1e−udu is the gamma function, Φ(0,1)
µ,1 (−a, p+1, 1) =

∑
n≥0

(−a)n

n!(n+1)p+1 for

µ ∈ C, 1F1(a; b; x) =
∑

n≥0
(a)n
(b)n

xn

n!
, for x, a ∈ C and b ∈ C \Z−

0 , is the confluent hypergeomet-
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Figure 4: Skewness (a) and kurtosis (b) plots of X as function of a.

ric function and (λ)η =
Γ(λ+η)
Γ(λ)

, for λ ∈ C \ {0}, is the generalized Pochhammer symbol, under
the convention (0)0 = 1.

Using Equation (10), the rth moment of X reduces to

E[Xr] = λ
∞∑

m=1

vm m emλ Drβ−1

t

[
Γ(t+ 1,mλ)

(mλ)t+1

]

t=0

.

For z > 0, the rth incomplete moment of the random variable Y with Chen distribution, say
qr(z;λ, β) =

∫ z

0
yr g(y;λ, β)dy, follows from Pogány et al. (2017) as

qr(z;λ, β) = λeλ
∑
n,k≥0

k∑
j=1

(2)n+k

(2)n

(−1)n+jλn
(
k
j

)

n!k!(j + 1)rβ−1+1
γ(rβ−1, (j + 1)(1− z−1)), (11)

where γ(p, x) =
∫ x

0
up−1e−udu is the incomplete gamma function.

So, using Equations (7) and (11), the rth incomplete moment of X can written as

mr(z) = λ
∞∑

m=1

memλvm
∑
n,k≥0

k∑
j=1

(2)n+k

(2)n

(−1)n+j(mλ)n
(
k
j

)

n!k!(j + 1)rβ−1+1
γ(rβ−1, (1− z−1)(j + 1)).

The moment generating function (mgf) of Y ∼ Chen(λ, β), MY (t) = E[e−tY ], t > 0, can
be written, according to Pogány et al. (2017) by

MY (t) = λβeλt−β
∑
n≥0

(−λ)n

n!
1Ψ0

[
(β, β);−;

n+ 1

tβ

]
, (12)

where

1Ψ0 [(a, b);−; z] =
∑
n≥0

Γ(a+ bn) zn

n!
, z, a ∈ C, b > 0,

is the generalized Fox–Wright function.
Thus, using (7) and (12), the mgf of X follows as

MX(t) = λβt−β

∞∑
m=1

∑
n≥0

memλ(−mλ)nvm
n!

1Ψ0

[
(β, β);−;

n+ 1

tβ

]
.
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4 Estimation
Consider x1, · · · , xn the observed values of X1, · · · , Xn ∼ OLLC(a, λ, β). Then, the log-

likelihood for (a, λ, β)⊤ is given by

L(a, λ, β) =n log aλβ + nλ+ (β − 1)
n∑

i=1

log xi +
n∑

i=1

xβ
i − λ

n∑
i=1

ex
β
i

+ (a− 1)
n∑

i=1

log

[
eλ(1−ex

β
i ) − e2λ(1−ex

β
i )

]

− 2
n∑

i=1

log

{[
1− eλ(1−ex

β
i )

]a
+ eaλ(1−ex

β
i )

}
.

(13)

The components of the score vector U(a, λ, β) = (Ua, Uλ, Uβ)
⊤ of the log-likelihood (13)

are given by

Ua =
n

a
+

n∑
i=1

log

[
eλ(1−ex

β
i ) − e2λ(1−ex

β
i )

]
− 2

n∑
i=1

t(xi)
a log t(xi) + λeaλ(1−ex

β
i )(1− ex

β
i )

t(xi)a + eaλ(1−ex
β
i )

,

Uλ =n+
n

λ
−

n∑
i=1

ex
β
i + (a− 1)

n∑
i=1

eλ(1−ex
β
i )(1− ex

β
i )− 2e2λ(1−ex

β
i )(1− ex

β
i )

eλ(1−ex
β
i ) − e2λ(1−ex

β
i )

− 2
n∑

i=1

aeaλ(1−ex
β
i )(1− ex

β
i )− at(xi)

a−1eλ(1−ex
β
i )(1− ex

β
i )

t(xi)a + eaλ(1−ex
β
i )

,

Uβ =
n

β
+

n∑
i=1

log xi +
n∑

i=1

xβ
i log xi − λ

n∑
i=1

xβ
i e

xβ
i log xi

+ (a− 1)
n∑

i=1

2λxβ
i e

2λ(1−ex
β
i )+xβ

i log xi − λxβ
i e

λ(1−ex
β
i )+xβ

i log xi

eλ(1−ex
β
i ) − e2λ(1−ex

β
i )

− 2
n∑

i=1

aλxβ
i t(xi)

a−1eλ(1−ex
β
i )+xβ

i log xi − aλxβ
i e

aλ(1−ex
β
i )+xβ

i log xi

t(xi)a + eaλ(1−ex
β
i )

,

where t(xi) = 1− exp{λ(1− ex
β
i )}.

The maximum likelihood estimates (MLEs) (b̂, λ̂, β̂) of (b, λ, β) are the simultaneous so-
lutions of Ua = Uλ = Uβ = 0. These solutions are those (b̂, λ̂, β̂) values that maximize the
log-likelihood (13). These MLEs can not be obtained analytically. So, the use of interactive
methods such as the quasi-Newton BFGS and Newton-Raphson algorithms is required.

4.1 Simulation
Here, a Monte Carlo simulation is performed to evaluate the accuracy of the MLEs for

the OLLC model. The optim function available in R Project (R Core Team, 2020) is used
to obtain these MLEs. The random number generation is done using the Equation (9). The
simulation of Monte Carlo is performed with 1, 000 repetitions and with samples sizes of
n = {100, 200, 300, 400} for two scenarios. The true parameter values are: a = 0.5, λ = 1.7

8
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and β = 1.9 for scenario 1 and a = 4.1, λ = 0.5 and β = 0.6 for scenario 2. The evaluation is
based on the average estimates (AEs), biases and mean square errors (MSEs).

The results of the simulations are described in Table 2. Note that in both scenarios, when n
grows the MLEs converge to the true parameters and the biases and MSEs decrease. Thus, the
MLEs for the OLLC model is in agreement with what is expected from asymptotic theory.

Table 2: AEs, biases and MSEs for the OLLC distribution under scenarios 1
to 2.

scenario 1: (a, λ, β) = (0.5, 1.7, 1.9)

Par
n = 100 n = 200

AE Bias MSE AE Bias MSE
a 0.49334 −0.00666 0.00842 0.49808 −0.00192 0.00422
λ 1.76273 0.06273 0.09419 1.72808 0.02808 0.04383
β 1.99142 0.09142 0.09906 1.94346 0.04346 0.04598

Par
n = 300 n = 400

AE Bias MSE AE Bias MSE
a 0.50032 0.00032 0.00277 0.49993 −0.00007 0.00196
λ 1.71917 0.01917 0.02692 1.71208 0.01208 0.01998
β 1.91988 0.01988 0.02667 1.91904 0.01904 0.01982

scenario 2: (a, λ, β) = (4.1, 0.5, 0.6)

Par
n = 100 n = 200

AE Bias MSE AE Bias MSE
a 4.40437 0.30437 9.00016 4.58201 0.48201 6.46828
λ 0.52494 0.02494 0.00460 0.50940 0.00940 0.00207
β 0.74695 0.14695 0.14609 0.65482 0.05482 0.06959

Par
n = 300 n = 400

AE Bias MSE AE Bias MSE
a 4.51684 0.41684 4.28313 4.36601 0.26601 2.49295
λ 0.50459 0.00459 0.00123 0.50339 0.00339 0.00088
β 0.62444 0.02444 0.04225 0.61910 0.01910 0.02958

5 Regression model
Taking ν = median(X), the parameter λ can be written as

λ =
log(0.5)

1− eνβ
.

By this parameterization, the pdf of the reparameterized OLLC (ROLLC) distribution is
given by

fOLLC(x; a, β, ν) =

aβ log(0.5)xβ−1e
xβ+log(0.5) 1−ex

β

1−eν
β

[
e
log(0.5) 1−ex

β

1−eν
β − e

2 log(0.5) 1−ex
β

1−eν
β

]a−1

(1− eνβ)

{[
1− e

log(0.5) 1−ex
β

1−eν
β

]a

+ e
a log(0.5) 1−ex

β

1−eν
β

}2 ,

9
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with corresponding survival function

SOLLC(x; a, β, ν) =
e
a log(0.5) 1−ex

β

1−eν
β


1− e

log(0.5) 1−ex
β

1−eν
β

a

+ e
a log(0.5) 1−ex

β

1−eν
β

,

where ν > 0 denotes the median of the distribution. Here, the random variable under parameteri-
zation in the median is denoted as X ∼ ROLLC(a, β, ν). For a = 1, the reparameterized Chen
(RC) distribution is obtained.

Since ν denotes the median of X , then this median can be modeled by covariates. The
regression model for the median νi of xi is given by

g(νi) =
k

m=1

wimδm = ηi, (14)

in which δ = (δ1, . . . , δk)
⊤ is k-vector of unknown parameters, wi1, . . . , wik are observations

on k covariates (k < n), which are assumed fixed and known and ηi is the linear predictor.
Here, g(·) is strictly monotonic and twice differentiable link function, such that g : R+ → R.
Examples of the link functions can be: logarithmic function g(ν) = log ν and square root
function g(ν) =

√
ν.

In survival data analysis, the data are often censored. This happens in situations where the
patient has left follow-up, died of another cause or simply the study has ended. In situations like
this, the time to failure is longer than the observed time. However, these censored observations
cannot be ignored. Thus, methods to model this censoring must be realized.

Suppose that individuals have a lifetime Xi and right censoring time X(c)
i , where Xi and X

(c)
i

are independents. Under censoring, the observed data set are (Ti, ψi), where Ti = min{Xi, X
(c)
i }

and ψi is a censoring indicator variable defined by

ψi =


1, Xi ≤ X

(c)
i ,

0, Xi > X
(c)
i .

Let the independent random variables Xi ∼ ROLLC(a, β, νi), i = 1, . . . , n, with observed
values xi. From pdf fOLLC(x; a, β, ν) and survival function SOLLC(x; a, β, ν), the log-likelihood
under censoring, for ROLLC regression model (14) is given by

L(a, β, δ) =
n

i=n

ψiLi(a, β, νi) +
n

i=1

(1− ψi)L(c)
i (a, β, νi),

where

Li(a, β, νi) = log(aβ) + log


log(0.5)

1− eν
β
i


+ (β − 1) log xi + xβ

i + log(0.5)
1− ex

β
i

1− eν
β
i

+ (a− 1) log


e

log(0.5) 1−e
x
β
i

1−e
ν
β
i − e

2 log(0.5) 1−e
x
β
i

1−e
ν
β
i




− 2 log





1− e

log(0.5) 1−e
x
β
i

1−e
ν
β
i



a

+ e
a log(0.5) 1−e

x
β
i

1−e
ν
β
i
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and

L(c)
i (a, β, νi) = a log(0.5)

1− ex
β
i

1− eν
β
i

− log






1− e

log(0.5) 1−e
x
β
i

1−e
ν
β
i



a

+ e
a log(0.5) 1−e

x
β
i

1−e
ν
β
i



 .

The MLEs of (a, β, δ), says (â, β̂, δ̂), can be found by maximizing L(a, β, δ) numerically
with respect to its parameters. This maximization can be performed without difficulty in some
statistical packages, such as R (R Core Team, 2020) (optim function) and Ox (Doornik, 2018)
(sub-routine MaxBFGS).

The observed information matrix J(â, β̂, δ̂) can be calculated numerically. Under general
conditions of regularity, the multivariate normal Nk+2(0, J(â, β̂, δ̂)

−1) distribution can be used
to obtain the standard errors of the estimates and their confidence intervals.

Since RC distribution is a special case of ROLLC when a = 1, the likelihood ratio (LR)
between these two regressions models can be used. The null hypothesis and alternative hypothesis
of the LR test are H0 : a = 0 and H1 : a ̸= 0, respectively. The LR test is given by

w = 2

L(â, β̂, δ̂)− L(1, β̃, δ̃)


,

where (â, β̂, δ̂) are the MLEs under H1 and (ã, β̃, δ̃) are the MLEs under H0. For n large and
under H0, w ∼ χ2

1, where χ2
1 is the chi-square distribution with one degree-freedom. The null

hypothesis is rejected when w > χ2
1(1− α), where χ2

1(1− α) is the quantile (1− α) of χ2
1.

5.1 Simulation
To show the accuracy of the maximum likelihood estimators for the LL regression model,

under censoring, Monte Carlo simulations with 10000 replicates are performed. The censoring
percentages (cp) is of 0%, 10% and 30% for the sample sizes n = {60, 120, 300}. The evaluation
is based on the AEs and the MSEs.

The simulated model is given by

log νi = δ1 + δ2wi2 + δ3wi3 + δ4wi4, i, . . . , n. (15)

The covariates were generated from the standard uniform distribution, i.e., wim ∼ U(0, 1),
m = 2, 3, 4. The true parameters adopted are: δ1 = 1.5, δ2 = 0.4, δ3 = −2.6 and ϕ = 3.2.
The response variables x1, . . . , xn are generated from Equation (9) with λi = log(0.5)/[1 −
exp(νβ

i )], where νi is obtained from structure of the regression model (15). The censoring times,
x
(c)
1 , . . . , x

(c)
n , are generated from x

(c)
i ∼ U(0, θi), where θi is such that it satisfies Pr(Xi >

θi) = cp, with cp ∈ {0.0, 0.15, 0.30}. The lifetimes considered in each fit are given as ti =

min{xi, x
(c)
i } with censoring indicator

ψi =


1, xi ≤ x

(c)
i ,

0, xi > x
(c)
i .

Table 3 shows the AEs and MSEs ot the simulation for the ROLLC regression model under
censoring. Note that, for all censoring levels, when n increases, the MLEs converge to true
parameters and MSEs decrease. These results show the consistency of the MLEs of the ROLLC
regression model.

11



48 Journal of Econometrics and Statistics

Table 3: Monte Carlo simulation results for ROLLC regression model.
n Par cp = 0.0 cp = 0.15 cp = 0.30

AE MSE AE MSE AE MSE
50 a 0.46012 0.02228 1.33581 2.27373 1.53274 2.79531

β 2.14037 0.35895 1.22666 1.14958 0.97721 1.31206
δ1 0.50981 0.10719 0.48935 0.50827 0.50680 0.57947
δ2 −2.37359 0.13762 −2.42061 0.67938 −2.37291 0.83574
δ3 −1.58785 0.13869 −1.62905 0.64295 −1.63978 0.81537
δ4 0.69120 0.12593 0.68888 0.59971 0.67306 0.67834

120 a 0.48252 0.00739 0.85710 0.63530 1.15040 1.53629
β 1.93315 0.09275 1.49941 0.67436 1.23142 0.94895
δ1 0.49586 0.02819 0.51191 0.16418 0.52667 0.23092
δ2 −2.37469 0.03889 −2.40705 0.19022 −2.40490 0.27629
δ3 −1.59224 0.03313 −1.64265 0.19940 −1.63890 0.28104
δ4 0.69789 0.03860 0.68693 0.20312 0.68282 0.29667

300 a 0.49157 0.00254 0.66579 0.22113 0.80176 0.35226
β 1.85490 0.02447 1.61388 0.36209 1.41223 0.58115
δ1 0.50343 0.01009 0.49475 0.04988 0.50544 0.07188
δ2 −2.39489 0.01288 −2.41209 0.07038 −2.40722 0.09842
δ3 −1.59495 0.01164 −1.59973 0.06040 −1.61254 0.08987
δ4 0.69555 0.01223 0.69908 0.06332 0.70345 0.09184

6 Applications
In this section, applications to real censored and uncensored data are considered to show the

potentiality of the proposed model.

6.1 Uncensored data
Three data sets are considered, namely:

1. The first one refers to graft survival times (in months) of 148 renal transplant patients
(graft data). This data also was analyzed by (Kayal et al., 2019).

2. The second one is the famous Aarset data, which refers to the lifetimes of 50 devices
(Aarset data). Mudholkar and Srivastava (1993) also used this data.

3. The third one (n = 150) referes to petal width (in cm) samples of three species of Iris (Iris
setosa, Iris virginica and Iris versicolor) (Iris data). These data were introduced by Fisher
(1936) and are available in software R (R Core Team, 2020).

The OLLC distribution is compared with three others known distributions, namely: Burr XII
(BXII), exponentiated-Weibull (EW) (Mudholkar and Srivastava, 1993) and gamma-Lomax (GL)
(Cordeiro et al., 2015) distributions. The pdfs of the BXII, EW and GL distributions are given by

fBXII(x; s, d, c) =
cd

sc
xc−1[1 + (x/s)c]−(d+1), x > 0,

fEW(x; a, β, α) = aαβαxα−1 exp{−(βx)α} [1− exp{−(βx)α}]a−1 , x > 0
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and
fGL(x; a, β, α) =

αβα

Γ(a)
[β + x]−(α+1){−α log[β/(β + x)]}a−1, x > 0,

respectively, where s, d, c, a, β, α > 0.
To choose the best model, the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics

described in Chen and Balakrishnan (1995) are adopted. The best model is the one with the
lowest values of these statistics.

Tables 4, 5 and 6 present the MLEs with the standard errors (SEs) in parentheses and the
information criteria for from graft, Aarset and Iris datasets, respectively. In the three datasets,
the statistics W ∗ and A∗ point to the OLLC distribution as the best model.

Graphical analysis is also an important indicator for choosing a model. Figures 5, 6 and
7 present the estimated pdfs and cdfs for the graft, Aarset and Iris datasets, respectively. It is
observed in these figures that, in the three datasets, the OLLC model has a better fit, corroborating
with the W ∗ and A∗ statistics.

Table 4: Estimation results for graft data.
Model Estimate W ∗ A∗

OLLC(a, λ, β) 0.7488 0.0266 0.4324 0.0904 0.7214
(0.1089) (0.0093) (0.0258)

BXII(s, d, c) 194.0200 12.9412 1.0495 0.5779 3.5751
(101.8254) (6.1792) (0.0746)

EW(a, β, α) 0.1427 0.0250 4.6904 0.1231 0.8002
(0.0124) (0.0012) (0.0136)

GL(a, β, α) 0.9389 232.4819 13.2583 0.6001 3.6987
(0.0963) (111.8847) (6.1279)
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Figure 5: Estimated pdfs (a) and estimated cdfs (b) for graft data.
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Table 5: Estimation results for Aarset data.
Model Estimate W ∗ A∗

OLLC(a, λ, β) 0.3762 0.0023 0.4658 0.1660 1.2675
(0.0714) (0.0006) (0.0108)

BXII(s, d, c) 127.7912 3.6590 1.0432 0.5545 3.3136
(61.0142) (1.6482) (0.1242)

EW(a, β, α) 0.1456 0.0109 4.6957 0.2732 1.8064
(0.0218) (0.0009) (0.0228)

GL(a, β, α) 0.8407 128.1478 2.8494 0.5668 3.3768
(0.1506) (58.8085) (1.1265)
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Figure 6: Estimated pdfs (a) and estimated cdfs (b) for Aarset data.

Table 6: Estimation results for Iris data.
Model Estimate W ∗ A∗

OLLC(a, λ, β) 0.5485 0.2116 1.4206 0.3713 2.8008
(0.0636) (0.0450) (0.0981)

BXII(s, d, c) 17.4015 44.3020 1.4630 1.3964 8.1928
(11.0617) (38.6172) (0.1029)

EW(a, β, α) 0.1008 0.4287 9.6595 0.5545 3.6607
(0.0085) (0.0101) (0.0224)

GL(a, β, α) 1.5790 40.9046 54.9308 1.5931 9.1745
(0.1678) (33.3069) (43.6705)

6.2 Censored data
The data considered refer to a study, described in Klein and Moeschberger (1997), of 90 male

patients diagnosed in the 1970-1978 period with laryngeal cancer who were followed up until
01/01/1983. This study has the presence of two exogenous variables: w1 and w2. The variable w1
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Figure 7: Estimated pdfs (a) and estimated cdfs (b) for Iris data.

refers to the age of each patient (in years). Alrady, the variable w2 is a dummy variable denoting
the stage of the disease (1 = primary tumor, 2 = nodule involvement, 3 = metastasis, and 4 =
combinations of the three previous stages). The response variable (x) represents the respective
failure or censoring times (in months). The censoring type is of failure (0 = censoring and 1 =
lifetime observed) and the percentage of censoring is 44.44%.

The ROLLC regression to be estimated is given by

log νi = δ1 + δ2wi1 + δ3Di2 + δ4Di3 + δ5Di4, i = 1, . . . , 90,

where νi denotes the median and Di2 = 1 (wi2 = 2), Di3 = 1 (wi2 = 3), Di4 = 1 (wi2 = 4).
Table 7 shows the estimates results for the ROLLC and RC models. In both models, the

coefficients δ2 and δ3 were not statistically significant. The Akaike Information Criterion
(AIC) and Hannan–Quinn Information Criterion (HQIC) point to the ROLLC model, while the
Bayesian Information Criterion (BIC) points to the RC model. The LR test to discriminate
between ROLLC and RC models is w = 3.1829 and the critical value at the 8% significance level
is χ2

1(0.92) = 3.0649. Thus, the null hypothesis of the RC model is rejected, and the ROLLC
model is a better fit for the data.

7 Conclusions
A new distribution that extends the Chen distribution has been proposed. This new model

adds an extra shape parameter to the Chen distribution, giving more flexibility to the shapes
of the Chen distribution’s density curves and failure rates. The density of the new distribution
admits several forms, including the bimodality. Regarding the failure rate function, it can be
decreasing, bathtub, unimodal, unimodal-bathtub. By inversion method, we show that random
numbers of the new distribution can be performed easily.

From this new distribution a regression model for censored data is proposed. This model has
a regression structure at the median, with an aid of a link function.
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Table 7: Summary of the estimates of the ROLLC and
RC regression models.
Par Estimate Std. Error z-value p-value

ROLLC
a 5.80621 14.75336 0.39355 0.69391
β 0.10963 0.27546 0.39799 0.69063
δ1 3.02360 0.91680 3.29800 0.00097
δ2 −0.01449 0.01312 −1.10461 0.26933
δ3 −0.11154 0.38699 −0.28822 0.77318
δ4 −0.72458 0.38552 −1.87949 0.06018
δ5 −1.69759 0.43989 −3.85913 0.00011

AIC BIC HQIC
297.00966 314.50833 304.06615

RC
β 0.51890 0.04341 11.95351 0.00000
δ1 2.96285 0.70027 4.23100 0.00002
δ2 −0.01452 0.01030 −1.40874 0.15891
δ3 −0.08895 0.30282 −0.29373 0.76896
δ4 −0.44868 0.25453 −1.76280 0.07793
δ5 −1.53309 0.37696 −4.06700 0.00005

AIC BIC HQIC
298.19265 313.19151 304.24107

The estimation of unknown parameters is performed by the maximum likelihood method.
Monte Carlo simulations were performed, showing the accuracy of the maximum likelihood
estimators for the proposed model. The usefulness of the proposed model in practice is shown
through three applications to uncensored data and one application to censored data.
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